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Abstract
The National Traffic Information System (NTIS) provides real-time measurements of traffic volume and speed
on the Strategic Road Network. NTIS data has been used to assign a traffic profile to each section of road or
”link” on the network. The profile gives the expected travel time at any time of day. Thales UK are members of a
consortium operating the NTIS system on behalf of Highways England. One of their functions is to provide real-
time information on deviation-from-profile events (DPEs) caused by congestion in excess of that expected from
profile. This report examines simple data-driven algorithms for predicting the duration of DPEs and discusses
ways in which the skill of such predictions can be quantified. A large dataset containing 3 months of traffic
data from the M11 and M6 motorways is used. The DPE events are extracted using modern cloud-based data
analytics methods and their statistical properties are characterised. Simple heuristic models, including the one
currently used by Thales, are implemented and benchmarked against the scoring system used by Highways
England to assess prediction skill. Our preliminary results indicate that improved skill scores are possible with
minimal increase in model complexity. The best performance is obtained using a weighted average of a group of
simpler models. The Highways England prediction skill score is sub-optimal from a user perspective. It can be
demonstrated that this sub-optimality could be exploited to provide better predictions to users without significantly
compromising the skill score.
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1. Introduction
Transport is found at the very essence of many physical phe-
nomena occurring in the universe. From quantum field theory
to galaxy collisions, the process of exchanging mass, energy
and momentum is crucial to understand the world we live
in. From a more mundane perspective, although macroscopic
human transportation involved walking or swimming from the
beginning, elaborate modes of transports — such as domestic
animals, canoes or aircraft — have been crucial for the devel-
opment of society. In particular, here we are concerned with
a phenomena born in the 20th Century that still prevails as a
very annoying and costly problem affecting all layers across
society: the traffic jam.
In fact, investment in the infrastructure of transport systems
is an essential driver for the economy [1]. In developed coun-
tries such as the UK, there is limited capability to increase
the physical capacity of the transport infrastructure. This is
specifically the case for the Strategic Road Network, com-
prising approximately 4,400 miles of motorways and major
trunk roads across England [2]. Current transportation policy
and research is focused on Intelligent Mobility rather that the
construction of new infrastructure: in the context of road trans-
port, Intelligent Mobility aims to utilise new technologies and
real-time data to improve the efficiency of existing physical
infrastructure [3].
The UK is considered world-leading in its ability to collect
and process real-time data from its road network. Highways
England are responsible for making this data available through
the National Traffic Information Service (NTIS) [4]. High-
ways England collects data of the speed, flow and travel time
on the Strategic Road Network, using sensors on the road and
in vehicles. These are operated by Thales UK in collaboration
with other partners.
As a member of the consortium operating the NTIS, Thales
UK is tasked to provide real-time information about the so-
called “deviation-from-profile events” (DPEs), defined as the
continuous exceedance from usual (averaged) observations in
terms of travel time through delimited road sections. These
events usually signify severe congestion on the road and can
cause major disturbances to the network operations. For this
reason, Thales UK supplies predictions on the lengths of these
events to aid the network operators. The aim of this project
is to use the data provided by NTIS to better understand the
DPEs and to develop simple data-driven methods that refine
the predictions that Thales UK currently makes.
There are two clearly distinct approaches to this problem.
The first is based on the physical modelling of vehicular traf-
fic, usually involving over-simplified microscopic models or
computationally expensive fluid-like descriptions. Although
providing useful theoretical insight and stimulating research,
the application of such models to real-time prediction is too
involved for the scope of this report. The second approach
involves the statistical analysis of several measurable mag-
nitudes present in the system (e.g. travel time series) and

making use of heuristic and statistical forecasting methods.
This last approach has been taken for the development of the
algorithms in the report, for its computational simplicity and
its low dependency on physical principles.
It is worth noticing that most of the existent work on this field
falls in the first approach: many efforts have been done since
the 1950s to understand the open problem of vehicular traffic
modelling, although this is still subject to debate and cannot
provide many solid applications. Usually, the mathematical
work produced concerning vehicular traffic can be categorized
in either macroscopic or microscopic modelling. For example,
Interacting Particle Systems (IPS) studies, Kinetic Theory
models and Car-Following models fall into the microscopic
description [5] [6]. IPS successfully explain how conserva-
tion laws [7] arise from the microscopic stochastic process
associated [8]. On the other hand, Kinetic models — based
on Boltzmann-like equations for the Kinetic Theory of Gases
— allow for a better understanding of the impact of different
physical and behavioural considerations such as car length,
safe distance, reaction times or driver-desired velocities. Fi-
nally, Car-following models [5] are good for establishing a
deterministic link between driver behaviour and stability of
the flow. Different driver behaviours allow to study the sen-
sitivity to traffic jams. Macroscopic or fluid-like models —
the fundamental being Lighthill-Whitham model [9] — are
useful to derive long-term behaviour given certain initial con-
ditions [10], in the form of Cauchy or Riemann problems. In
general, realistic approaches involve solving stochastic ver-
sions of Burgers’ equation [7], this being the origin of the
aforementioned computational complexity.
As mentioned before, the approach used in this project differs
from the mentioned literature for its principle-free or heuristic
flavour. Note that as far as the authors are concerned, none
of the data-driven models and algorithms presented here have
ever been published up to this date, so they can be considered
novel contributions to the field.

This report is organised as follows: Section 2 contains a con-
cise explanation of the process undertaken to acquire, select
and process data from the NTIS; Section 3 performs general
statistical analysis on the selected dataset, including cluster-
ing, summary statistics of main observables and speed/flow
trajectory analysis; Section 4 reviews the existent approach
used by Thales to tackle the DPE duration forecasting prob-
lem; the core of the report is presented in Section 5, where we
propose five heuristic algorithms, one statistical-based method
and a weighted multi-model approach for forecasting travel
times and DPE durations; finally, Section 6 discusses results
and gives an overview of project limitations, future directions
and other final remarks. An appendix can be found at the end
of the document with supporting information for the report.
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2. Data: Selecting and Processing

The NTIS employs a directed network model to represent
the major roads in England; wherever a road encounters a
diversion, a node is placed on the network. The basic building
blocks of this network are the so-called links: they are portions
of carriageways representing edges between nodes connected
by a road. The links on the network incorporate thousands of
induction loops (sensors) at different sites, which report speed
and flow data to a centralised system.
NTIS data is used to calculate and assign traffic profiles to the
links across the network. A traffic profile for a link reports
the average time to traverse the link under expected road
conditions for a specific time and day [11].
The data was acquired from the NTIS web service for the
months of March, April and May. Upon acquisition, the data
was cleaned, formatted and stored in a database for easy access
(for more information refer to Appendix A).
Linear interpolation was performed only where there was
missing data for 10 or less consecutive minutes. Otherwise, a
missing value flag was raised.

2.1 Data Contents
For each link on a specific date, the data consists of one entry
per minute, containing the following:

• Average values of traffic speed, traffic flow and traffic
headway.

• Average values of current travel time, profile travel time
and free flow travel time.

• Event flags for spontaneous congestion events, weather
events and other types of events.

2.2 Data Selection
The steps of process of selecting and processing the data
are sequentially described in the following subsections and
summarised in Figure 1.

Location Dependent Data Selection
Link-level data was only extracted for the sections of M6
and M11 shown in Figure 2. These have a fixed speed limit
throughout the whole section, a desirable property which
avoids the introduction of additional noise or perturbations in
the traffic measurements.

Training and Testing Datasets
To perform the analysis over the extracted data, it was divided
into two subsets:

• Training Dataset: corresponds to 70% of all data. The
exploratory analysis and the calibration of algorithms
is performed on this subset.

• Testing Dataset: corresponds to the remaining 30% of
all data. To avoid overfitting, this data set is used only
for testing the performance of algorithms.

Figure 1. Selection and processing of Traffic England data
with approximate sizes.

3

Figure 2. Sections of the M6 and M11 motorways selected
for the analysis.

Time Dependent Data Selection
To ensure the quality of the analysis the data was selected
based on the following criteria:

• Discard weekends and bank holidays, focusing on days
with a ”normal” traffic regime. Qualitative difference
can be observed for both regimes in Figure 3.

• Only consider data points between 5am and 11pm, to
avoid diluting the data with entries which are non rep-
resentative of the problem due to low occupancy.

• Discard time periods containing an accident flag, as the
behaviour of these depends heavily on type of event,
making them significantly different from spontaneous
congestions [12], placing their dynamics beyond the
scope of this report.
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(a) Traffic flow and speed
evolution over a Monday.

(b) Traffic flow and speed
evolution over a Sunday.

Figure 3. Samples of the evolution of traffic.

3. Exploratory Data Analysis

3.1 Deviation From Profile Events
First, the attention was focused analysing what was labelled
as the Deviation from Profile Events (DPE). These events are
defined as the continuous exceedance (5 minutes or more)
of the profile travel time by more than six seconds. They
are specified by a time series of the Deviation from Profile
Intensities xt , which are defined as follows:

xt = ct − pt −6 (1)

where ct and pt are the current travel time and profile travel
time respectively. Here xt can be positive or negative, but since
a negative deviations implies lower travel times, these were
not taken into account. The DPEs were obtained from the raw
travel time data using a threshold based approach that was
provided by Thales through private communication [13]. It
was decided to discard any DPE that is shorter than 20 minutes
or longer than 360 minutes in duration. Furthermore, events
only considered where the maximum xt was greater than or
equal to 20. Given the noisy nature of the DPE time series,
it was decided to smooth the observations using a low-pass
filter (See Appendix C for more details).
The rest of this section details the exploratory data analysis
that was performed on the DPE data.

3.2 Clustering
Testing was conducted to check if the DPEs can be categorised
based on their raw time series data. To this end, we applied
an unsupervised clustering algorithm, Agglomerative Hierar-
chical Clustering with Complete Linkage [14] on a collection
of different DPE time series. As a measure of distance, Dy-
namic Time Warping (DTW) [15] with a Manhattan local cost
was used. The algorithm was able to detect clear outliers;
however, it was unable to produce visually distinguishable
clusters. This is suspected to be caused by the presence of
a significant number of noisy observations that skewed the
results of the clustering algorithm.

3.3 Summary Statistics at Link Level
Six distinct statistics were calculated at the link-level. These
calculations were performed separately for the M6 and M11.
Three of them were unnormalised, while the rest were nor-
malised by re-scaling both the time and the intensity scales.

In the following subsections, we present descriptions of the
statistics, along with the results of their calculations.

Description of the Unnormalised Statistics
The following three unnormalised statistics of the DPE were
calculated:

• Duration: corresponds to the duration of a DPE, mea-
sured in minutes.

• Global Maximum of the Intensity: is defined as the
greatest deviation from profile in a single DPE. The
maximum is measured in seconds.

• Size: is defined as the area under the curve of the time
series of a DPE. Physically it represents the aggregated
lost time by all vehicles traversing the link for the dura-
tion of the DPE.

The duration, the global maximum intensity and the size are
graphically illustrated in Figure 4.

Figure 4. Graphical representation of the duration, maximum
intensity and size of a DPE.

Figure 5 summarises the unnormalised statistics for M6 and
M11, where the distribution of each quantity is shown. As ob-
served in Figure 5a, the DPE duration distribution follows an
exponential law with a characteristic length of 1.20 hours (72
mins) for M6 and 1.92 hours (115 mins) for M11. Similarly,
according to Figure 5b, the distribution shows an exponential
decrease and the characteristic maximum intensity is calcu-
lated. For M6 it is 0.88 mins (52 sec) while for M11 it is 0.95
mins (57 sec). Finally, the characteristic size is 43 and 41 for
M6 and M11 respectively, as shown in Figure 5c.

Description of the Normalised Statistics
The normalised statistics calculated were:

• Location of the Maximum: is the normalised time at
which the global maximum of a DPE occurs. This is
represented by a number between 0 and 1.

• Symmetry Factor: measures the symmetry of the time
series of a DPE around its global maximum. The sym-
metry factor is defined as the ratio of the decline to the
growth, where the decline is the time from the global
maximum to the end of a DPE and the growth is the
time from the beginning of a DPE to the global maxi-
mum.

• Trapezium Parameters: a trapezium can be specified
by four parameters (a,b,c,h), where a is the length of
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(b) Distribution of maximum
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(c) Distribution of size of DPEs.

Figure 5. Unnormalised statistics showing the distribution of
sizes, maximum intensities and durations of DPEs.

projection of the left leg onto the longer base, b is the
length of the projection of the shorter base onto the
longer base and c is the length of the projection of the
right leg onto the longer base and h is the height.
Assuming a DPE consists of: build-up, plateau and
clearance, we can model the event as a trapezium with
a representing the time in build-up, b representing the
time in plateau and c representing the time in clear-
ance. The remaining parameter h is heuristically fixed
to 0.8×Global Maximum Intensity. This is illustrated
in Figure 6.
Once the parameters that define the shape have been
obtained, the length of the base and maximum intensity
are normalised to allow comparison between different
DPEs.

Figure 6. A schematic graphical representation of the
trapezium model.

The normalised statistics are summarised in the box plots
presented in Figure 7. A box plot representation of each
statistic is shown, comparing the overall patterns for M6 and
M11. Although the distribution of the position of global
maximum differs between motorways, it is generally located

near the middle of the DPE, as shown in Figure 7a. A similar
result is obtained for the symmetry factor, observed in Figure
7b. Finally, the distributions for the trapezium parameters are
presented in Figures 7c, 7d and 7e.
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(a) Distribution of position of
global maximum statistics.
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factor statistics.
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Figure 7. Box-plots of the normalised statistics.

3.4 Speed/Flow trajectories
Examining different Speed vs. Flow plots of DPEs a dichoto-
mous pattern can be noticed. In some of them, the trajectory
of the transition from a normal regime to maximal congestion
is very different to the one in the opposite direction. This
contrasts with other plots in which these trajectories are very
similar. An example of this behaviour is shown in Figure 8.
It was suspected this pattern is related to either the link length
or the symmetry factor. To test this, a distance metric was
developed that quantifies the difference between any two tra-
jectories u and v. The trajectories were fixed to 100 points
each using interpolation:

u :{pu
1, pu

2, ..., pu
i , ..., pu

100}
v :{pv

1, pv
2, ..., pv

i , ..., pv
100} (2)

where a point p•i is a coordinate ( f low,speed) in the Speed
vs. Flow graph. The distance metric developed is denoted by
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D:

D =
1

100

100

∑
i=1
||pu

i − pv
i || (3)

D was calculated for the two trajectories in every DPE, the
plot obtained can be seen in Figure 9.
It was not possible to find a meaningful threshold to cluster
the DPEs. Moreover, after some experiments, we were unable
to find any relationship of D with link length or symmetry
factor. This dichotomous pattern can be better analysed using
physical models and taking into account adjacent links.
It was also hypothesised that the trajectory difference was the
result of hysteresis in the system. Hysteresis is a time-based
dependence of a system’s output on present and past inputs
that causes a lack of reversibility when varying the input [16].
Further analysis is needed to determine if the system actually
exhibits hysteresis. However, taking into account that this is a
system far from equilibrium, this seems unlikely.

4. Current Approach

Thales UK calculates real-time predictions of the time it takes
to return to profile during a DPE. The complete behaviour
depends on a multitude of factors, most of which are very
difficult to measure. A solution to this problem is to use
heuristics and statistical methods to make the predictions.
This section presents the prediction and scoring algorithm
currently used.

4.1 Existing Algorithm
Through private communication [13] Thales UK provided the
algorithm they currently use to predict the time it takes to
return to the profile at each time step during a DPE. For every
newly observed point in the DPE time series, the algorithm
makes a prediction on the duration of the DPE based on a
prediction rule. This rule uses all the observations from the
beginning of the event until the current point to make the
prediction. The algorithm assumes a minimum threshold B
for the duration of a DPE, under which any predictions will be
given the value B (typically set to 20 minutes). The algorithm
is detailed in Algorithm 1, where the Predict function
is the prediction rule. The prediction rule that Thales UK
currently uses assumes that a DPE is symmetric around its
global maximum; therefore it predicts that the event will last
twice the time it takes to reach the observed global maximum.
This is given in Algorithm 2.

4.2 Existing Scoring
The skill of the prediction of an algorithm for this problem
is scored according to the Average Prediction Error at the
Midpoint EMid, defined below for a sample of N DPEs:

EMid =
1
N

N

∑
i=1

E(i)
Mid (4)

Figure 8. Two dichotomous behaviours. The colour gradient
represents the time of the day from red, signifying early hour
starting from 5am, all the way to 11pm, represented by dark
blue. The top figure shows that the trajectory going from the
normal regime to maximal congestion is similar to the
trajectory going in the opposite direction. This contrasts with
the bottom figure where there are two distinct trajectories.
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Figure 9. Histogram of D for all DPEs
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input :A time series of intensities: {x1,x2, . . . ,xT}
output :A series of predictions for every point in time:

{y1,y2, . . . ,yT}
initialise B;
for t in 1:T do

yt ← Predict(x1: t);
if yt < B then

yt ← B;
end

end
Algorithm 1: General algorithmic paradigm provided
by Thales for predicting the return to profile at every
point in a DPE.

Function Predict(x1:t )
buildup time← argmaxi∈{1,...,t}(x1: t);
prediction← 2*buildup time;
return prediction

Algorithm 2: Prediction rule that Thales UK currently
uses.

where E(i)
Mid is the percentage error for the ith DPE. E(i)

Mid is
calculated as follows:

E(i)
Mid = 100

|y(i)− ŷ(i)Mid|
y(i)

(5)

where y(i) is the true value of the duration of the ith DPE and
ŷ(i)Mid is the predicted value at the midpoint of the ith DPE.

5. Proposed Prediction Methods

In this section we will discuss some algorithms that were
developed to solve the Return to Profile problem, i.e. to give
real-time forecasting for the duration of DPEs.

5.1 Heuristic Algorithms
Null Model
An assumption can be made that the length of DPEs has a
narrow inter-quartile range. Therefore, the median DPE length
is a good estimation of duration of any DPE. This corresponds
to the prediction rule in Algorithm 3.

Function Predict(x1: t )
prediction← median length of all DPEs on the
motorway;
return prediction

Algorithm 3: Prediction rule that corresponds to pre-
dicting the median.

Relative Maximum
An improvement one can make on the original algorithm is
to use a relative maximum instead of a global maximum for
prediction. Hence, we estimate the time to clear from the
current point by the time to reach the latest observed local
maximum. This is given in Algorithm 4.

Function Predict(x1: t )
buildup time←maxs∈{1,...,t} s s.t. xs−1 ≤ xs;
prediction← 2*buildup time;
return prediction

Algorithm 4: Prediction rule when using a local maxi-
mum as a reference point.

Midpoint Prediction
Naively, one can assume that every newly observed point
in a DPE occurs at the midpoint of that event. While this
assumption seems outright wrong at the beginning, it turns
out that it provides the best prediction results based on the
scoring criterion. This assumption simply means that the
algorithm should predict that a DPE will last the same time
that it has already elapsed, i.e. the duration of the event is just
double the current time. This is given by to the prediction rule
in Algorithm 5.

Function Predict(x1: t )
buildup time← t;
prediction← 2*buildup time;
return prediction

Algorithm 5: Prediction rule corresponding the assump-
tion that every new point is the midpoint of a DPE.

Multiplying by a Constant Factor
One method that empirically outperforms the original algo-
rithm is multiplying its build up (time to the observed global
maximum) by a constant factor of 2.4. This is shown in Algo-
rithm 6.

Function Predict(x1: t )
buildup time← argmaxi∈{1,...,t}(x1:t);
prediction← 2.4*buildup time;
return prediction

Algorithm 6: Prediction rule corresponding to multiply-
ing the build up of the original algorithm by 2.4.

Intensity Scaling
Assuming that the time remaining to return to profile is propor-
tional to the intensity, we can predict the time to clear based
on the current value of the intensity by scaling it by factor C
as in Algorithm 7.
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Function Predict(x1: t )
initialise C;
time to clear← C*xt ;
buildup time← t;
prediction← buildup time + time to clear;
return prediction

Algorithm 7: Prediction rule based on the proportional-
ity assumption.

Dynamic Trapezium
In the Section 3.3, we explained how we modelled a DPE as a
trapezium. Here we use this model to predict the duration of
a DPE. We assume that the DPE is shaped like an isosceles
trapezium with parameters a, b, c and h, where a = c by the
definition of an isosceles trapezium and h heuristically set to
0.8 times the observed global maximum of the intensity (this
is described in more detail in Section 3.3). Therefore, a is set
as the minimum time it takes to reach the height h and b is the
time from that intersection until the current temporal point.
Based on these assumptions, the total duration of a DPE event
will be a+b+ c = 2a+b. This corresponds to the prediction
rule in Algorithm 8.

Function Predict(x1:t )
mx←max(x1:t);
a←mins∈{1,...,t} s s.t. xs ≥ 0.8mx;
b← t−a;
prediction← 2a+b;
return prediction

Algorithm 8: Prediction rule based on modelling the
DPE as a trapezium.

5.2 Linear Regression
This algorithm is based on the statistical class of linear re-
gression models. The idea behind it is to find statistically
significant relations between congestion-related observables
and the duration of a DPE. Historical data is used to train
the model, and the adjusted parameters are used for real-time
forecasting while observing new data from the links.

Linear Regression Model
As a first step towards predicting the return to profile of a DPE,
we chose the Symmetry Factor S (defined in Section 3.3) as
the response variable of a linear regression model. This is a
convenient observable, since it is independent of the scale of
DPEs and can be used to infer their duration.
The predictors for the regression are derived from the features
of the DPE time series, beginning with the time to maximum
deviation tm. We firstly postulate that there exists a linear
relationship on the logarithmic scale between S and tm:

log(S) = β0 +β1 log(tm) (6)

where β0 is an intercept, β1 is the slope of the line. Although S
have been chosen as a response variable, prediction purposes
demand information about the duration of the DPE y. In fact,
it can be easily seen that y is related to S through tm and
its complement, the time to return-to-profile after the global
maximum, tr. In particular, using the definition of S given in
Section 3.3:

y = tm + tr = tm(1+S) (7)

The data shows strong evidence for the relation in Equation 6;
however, the variance is too large to be explained by a single
regression. This variability can be properly addressed by con-
sidering multiple regressions through the use of a categorical
variable. We found that the adjusted R-squared coefficient of
the regression is significantly improved by considering the
number of peaks P ∈ {1,2, . . .} for each DPE as a factor in
the regression. To simplify this, we discretise P, i.e. we divide
the data into k different bins (categories) with equal depth
(frequency) based on P. Each category j can be viewed as
a regression on its own having a different intercept β

j
0 for

j ∈ {1, . . . ,k} and slope β1 common among all the considered
categories. Hence, the linear relationship for category j will
be give by:

log(S) = β
j

0 +β1 log(tm) (8)

Here, k is a parameter of the model. A large number of bins
can produce over-fitting, whereas a small number can reduce
the capacity of the model to explain the variance. We have
both the Akaike Information Criterion (AIC) and Bayesian In-
formation Criterion (BIC) [17] as heuristics to help us choose
the value of k that produces in the most parsimonious model.
These criteria are information theoretic quantities that measure
the relative quality of statistical models taking into account
the trade-off between goodness-of-fit and model complexity.
Note that other criteria might be used for this purpose, and
the performance of the algorithm may change.

Regression Results
We present the results of the regression on the data for k = 6
for the M6 and k = 7 for the M11. These are shown for the
M6 and M11 separately: in Tables 1 and 2 one finds the least
squares estimators for the linear coefficients of the model in
Equation 6 complemented with the categorization of P, i.e.
intercepts for each category β 1

0 , . . . ,β
k
0 and the common slope

β1; Figures 10 and 11 respectively represent the adjusted
model for each considered category.
Note that Tables 1 and 2 also show information about the
significance of each predictor and the quality of the fit. The p-
values measure the significance of each of the predictors based
on a t-test, where a low p-value implies a highly significant
predictor. The adjusted R-squared score reports the proportion
of the variability in the data that the model is able to capture.
Interestingly, the results also show that both motorways share
a similar slope, i.e. the relation log(S)'−1.3log(tm) holds
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Coefficients Estimates p-values

β1 -1.308 < 2e−16

β 1
0 3.515 < 2e−16

β 2
0 4.002 0.00561

β 3
0 3.654 0.42141

β 4
0 4.399 4.88e−06

β 5
0 4.598 2.55e−08

β 6
0 5.537 < 2e−16

Adjusted R-squared 0.5958
Table 1. Results for applying the linear regression model on
M6 data.

Coefficients Estimates p-values

β1 -1.337 < 2e−16

β 1
0 3.352 < 2e−16

β 2
0 3.831 0.00015

β 3
0 4.090 9.94e-09

β 4
0 4.595 < 2e−16

β 5
0 5.140 < 2e−16

β 6
0 5.580 < 2e−16

β 7
0 6.140 < 2e−16

Adjusted R-squared 0.7963
Table 2. Results for applying the linear regression model on
M11 data.

in both cases. This suggest that it might be worth investigating
the universality of such relationship using more data from the
same and other motorways. If the mentioned universality is
real, it is reasonable to assume that the lack of adjustment
for the M6 in comparison to the M11 is due to the scarcity
of data and not a consequence of a poorly chosen model.
This would indicate that its performance would increase when
incorporating more and more historical data.

Linear Regression Algorithm
The previous analysis uses a posteriori information for DPEs
to obtain the values of the predictors, i.e. the total number
of peaks and the time to maximum. However such informa-
tion only becomes known at the end of the DPE; therefore,
in addition to the variance of the regression, there is some
uncertainty that comes from estimating the values of the pre-
dictors , especially at the early stages of an event. Hence, the
operational procedure for the algorithm is to simply update
the values of the predictors at each time step during the event
and recalculate S accordingly. With new values of tm, P and
S, one can produce a forecast using Equation 7.

2 3 4 5
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Figure 10. Fit of the linear regression on M6 data.
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Figure 11. Fit of the linear regression on M11 data.

5.3 Weighted Multimodel
One can often improve the prediction power in a task by
averaging predictions from an ensemble of models. Here, we
propose a method to obtain a weighted average for the duration
of events predictions of different algorithms. We define a
weighted multimodel as the weighted sum of the predictions of
its constituent models. Consider a set of N predictive models
that provide predictions at time t, τm(t) ∈ {τ1(t), . . . ,τN(t)},
the weighted multimodel τ(t) is given by:

τ(t) =
N

∑
m=1

wmτm(t) (9)

where wm ∈ {w1, . . . ,wN} is the weight given to model τm(t).
Note that ∑

N
m=1 wm = 1. The weights are hyperparameters of

the multimodel and can be set either by experimentation or
by derivation. We chose the latter as it provides a statistically
sound explanation of the multimodel.
Assuming that among the set of N model, there exists a true
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model that can predict the correct duration of the DPE. Let
P(M = m) signify the probability that model τm(t) is the true
model. Hence, the ”expected” model can be given by:

τ(t) = E(τm(t)) =
N

∑
m=1

P(M = m)τm(t) (10)

Hence, comparing Equations 9 and 10 one can set wm =
P(M = m). Of course, P(M = m) is not known and not trivial
to calculate; however, it can be estimated empirically from
the data (see Appendix F for more details).
For the purpose of this project we chose a weighted multi-
model consisting of three constituent models: the Midpoint
Prediction, the Dynamic Trapezium and the Linear Model.

5.4 Benchmarking
To compare the performances of the collection of algorithms
we developed, we applied them on the M6 and M11 testing
datasets. As a measure of skill, we extended the scoring
criterion presented in Equations 4 and 5 to allow for measuring
the Average Prediction Error at any percentile of the DPEs.
This is defined below:

Ep =
1
N

N

∑
i=1

E(i)
p (11)

where E(i)
p is the percentage error at the pth percentile of the

duration of the ith DPE. E(i)
p is calculated as follows:

E(i)
p = 100

|y(i)− ŷ(i)p |
y(i)

(12)

where y(i) is the true value of the duration of the ith DPE and
ŷ(i)p is the predicted value at the p percentile of the ith DPE.
Figures 12 and 13 show the Average Prediction Error for val-
ues of p between 0 and 100 for M6 and M11, respectively. The
results in both figures show very similar tendencies for M6
and M11. In the following, we will comment quantitatively
the results for M6:

• In the first 20% of the events duration, all algorithms
have a very similar Average Prediction Error, which
decreases at almost a constant rate from ∼100% to
∼70%. This result shows the difficulty to make an
accurate prediction in the beginning of an event.

• After ∼20% of the event duration, the Null Model re-
mained nearly constant at ∼68% error. This value sets
a threshold from which it can be determined if an algo-
rithm has prediction capabilities or is just comparable
to a random guess.

• The Midpoint Prediction algorithm performed impecca-
bly at the 50% of the DPEs. This is an obvious result,
since every minute the algorithm always predicts the

time to clear to be equal to the current time of the DPE –
so at the 50% -the midpoint- it will always hit the target
perfectly. However, it can be seen that the strength of
this algorithm at the midpoint is its weakness near the
starting or ending points of the DPE.

• The four other algorithms’ performances had a similar
tendency: a decreasing average prediction error from
the beginning until ∼80% of the event duration fol-
lowed by a small error increase until the end. It should
be noted that the Dynamic Trapezium and the Weighted
Multimodel performed much better than the Existing
Model in every event duration percentile.

• In the inner plot of Global Error vs. Middle Inaccuracy,
it can be seen which algorithms are best in overall terms
(Global Error) or will minimize the Middle Inaccuracy.
The Global Error is defined as the sample mean of the
Average Prediction Error throughout all the duration
of the events. The Middle Inaccuracy is defined as the
percentage of predictions at the midpoint that had an
error of more than 20%.

• The Midpoint Prediction algorithm is by definition the
best algorithm regarding Middle Inaccuracy, achieving
0% in it. So this should be the algorithm of choice if the
main concern is to score highly on the Average Percent-
age Error at the Midpoint. The Dynamic Trapezium and
the Weighted Multimodel achieved the lowest Global
Error. These two should be especially considered if the
purpose is to obtain an overall good prediction through-
out all the DPE.

Figure 12. Results of the benchmark for the collection of the
algorithms for M6

6. Discussion and Conclusion
Due to time constraints on the project, it was only possible to
build small a database for the period between March and May
2016 for the M6 and M11 motorways. These motorways were
selected due to their desirable qualities - fixed speed limits
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Figure 13. Results of the benchmark for the collection of the
algorithms for M11

and low quantity of accidents. The fact that the database
only covered a period of three months, did not allow for
the possibility of studying seasonal tendencies. Yet, it was
possible to extract valuable information from the data. A
characterisation of the the nature of the DPEs was performed
using exploratory data analysis; interestingly, power laws
were found in the DPE duration and intensity statistics, despite
the fact that the shapes of the DPE time series displayed very
diverse dynamics.
In the quest of achieving good forecasting skill, statistical and
heuristic methods were preferred over physical models, due
to their computational simplicity and low reliance on physical
principles. Five heuristic methods and one statistical method
were proposed, along with a mixed multimodel. The Midpoint
Prediction algorithm was able to achieve perfect accuracy by
exploiting the way the scoring criterion was defined revealing
the sub-optimality of this performance measure. The Linear
Regression Model demonstrated a very good overall perfor-
mance, but was beaten by the Dynamic Trapezium, showing
the strength of heuristic methods. The Weighted Multimodel
comprising of a weighted average of the predictions of a group
of simpler models had the best overall performance.
It was established that there was a great room for improvement
when it comes to the scoring system. It is suggested that a
good scoring system evaluates the predictions throughout
the whole event using different weights for each percentile.
One idea is to make the weights proportional to the average
intensity of the event at the given percentile of duration of a
DPE.
An analysis of the Speed/Flow trajectories in the transition
from a normal regime to maximal congestion (and vice-versa)
was made. No cause or important relationship was found that
could explain why trajectories were very similar in some cases,
and very different in others. However, it was hypothesised
that this behaviour could be explained by hysteresis in the

system.
There is a wide spectrum of physical models and machine
learning algorithms that can be applied in the prediction DPEs
and traffic jams duration. The huge datasets available through
the NTIS could provide a good playground for experimenting
with these algorithms.
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1. Data Acquisition

UK motorways incorporate thousands of induction loops and
other types of sensors at different sites throughout the road
network. These sensors report different measurements for all
parts of the road network to a centralised system managed by
the NTIS [4]. This data is made available publicly in the form
of Daily Aggregated Traffic Data (DATD) publications. The
DATD publications are published at the end of each day and
contain multiple datasets pertaining to various measurements
within the road network for that day. The DATD publications
for the last three months are freely available to subscribers
to the NTIS system and are provided in XML format. The
specifications of the DATD publications are presented in Table
3.

2. Data Architecture
The NTIS employs a publish-subscribe messaging pattern
in its system, whereby, the published data is made available
on the internet. Subscribers to the NTIS system are able to
receive the published data in real-time or in the form of DATD
by sending the relevant request to the NTIS system via a web
service (Figure 14) [11]. To this end, a subscriber system
was built in Python. The subscriber system is of capable
of interfacing to the NTIS web service, and contains code
that requests and downloads the DATD publications. The
specifications of the subscriber system are provided below:

• The subscriber system sends an HTTP GET request to
the NTIS web service containing the relevant headers. If
the request is successful, the module receives a response
from the web service that contains the a zipped file of
the DATD XML publications. The module is then able
to download this file.

• The subscriber system is capable if unzipping the down-
loaded DATD publication and scanning the XML files
for the relevant data.

• While scanning for the required data, the system is able
to insert it into an SQL Relational Database.

• The system is run on two Linux virtual machine hosted
on Microsoft’s cloud service Azure, which also hosts
the database.

Figure 14. A simplified schematic representation of the
physical interface of the NTIS system.

3. Finite Impulse Response Filter

To smooth the data, we chose a discrete time Finite Impulse
Response filter. The output sequence of this filter is a weighted
sum of the most recent input values. This is described in the
following:

yn =
N−1

∑
i=0

bixn−i (13)

where n is the current point in time, N is the filter order and
bi is the ith filter coefficient for i ∈ 0, . . . ,N−1. Not that
∑

N−1
i=0 bi = 1. For this project, we selected a fourth-order low

pass filter with the following coefficients:

{0.5,0.25,0.125,0.0625,0.0625}

The frequency response magnitude of this filter is shown in
Figure 15.

Figure 15. The frequency response magnitude of the chosen
FIR filter.
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4. Technical Description of the Scoring
Criterion

Following the occurrence of a Deviation From Profile Event,
an estimate shall be provided of when the relevant section of
the NTIS Network shall return to Profile.
For a sample of N DPEs, the following information shall be
provided:

1. ReturntoPro f ileTimeARP (RT PTA): the time at which
the point where the DPE occurs returns Traffic Flow
values which are determined to be within the Profiled
value.

2. Event Mid Point (EMPA): defined as the time midway
between the EventA Publication Time Stamp and the
Return to Pro f ile TimeARP.

3. Estimated Event TimeMP (EETMP): defined as the es-
timated time to Return to Profile published at the Event
Mid Point (EMPA).

4. Actual Event TimeMP (AETMP): defined as the differ-
ence between the Return to Pro f ile TimeARP and the
EventA Publication Time Stamp.

The percentage error on the return to profile is calculated as
follows:

1. EstErrorA = 100 AETMP−EETMP
AETMP

if AETMP ≥ EETMP

2. EstErrorA = 100 EETMP−AETMP
AETMP

if AETMP < EETMP

The Average Error on the Return to Profile is calculated using
the following Performance Measure:

PM =
1
N

N

∑
A

EstErrorA (14)

5. Statistical Concepts

Linear Regression
Given a sample of n observations {Yi,Xi1, . . . ,Xip}i=1,...,n, com-
posed of a response variable Yi and p different independent
variables or predictors Xi j, j = 1, . . . , p, the model is formu-
lated as follows:

Yi = β0 +β1 f1(Xi1)+ · · ·+βp fp(Xip)+ εi (15)

for i ∈ {1, . . . ,n}, where εi are the error terms modelling un-
correlated noise affecting the underlying system. The er-
ror terms are independently and identically distributed with
εi ∼ N(0,σ2), i.e. the errors are normally distributed with a
constant variance. Note that f1, . . . , fp might be non-linear
functions of the predictors, i.e. the linearity of the model is re-
ferred to the relation between response and model parameters
β0, . . . ,βp[17].

Information Criteria
As has been mentioned in the report, we have made use two
information criteria for model selection purposes: Akaike

Information Criterion (AIC) and Bayesian Information Cri-
terion (BIC). Both can be derived from statistical principles
and provide a measure of the trade-off between goodness of
fit and model complexity.
In particular, AIC derives from Information Theory, and de-
scribes the process of loss of information when using a certain
model to describe a particular dataset. Mathematically, its is
defined as:

AIC = 2k−2ln(L) (16)

where k is the number of fitted parameters and L is the maxi-
mum value of the likelihood function of the model. Similarly,
BIC derives from Bayesian arguments and is defined as:

BIC =−2ln(L)+ k ln(n) (17)

where L and k are the same as before, and n is the size of the
dataset.

6. Weight Calculation for the Weighted
Multimodel

Consider the weighted average at time t, τ(t), defined as:

τ(t) = Em(τm(t)) =
N

∑
m=1

100

∑
q=1

P(M = m,Q = q)τm(t) (18)

Where Q is a random variable with support {1,2, . . . ,100} rep-
resenting the percentile in a DPE, M is a random variable with
support {1,2, . . . ,N} representing the true predictive model
(algorithm) and τm(t) is the predicted time to return to profile
at time t from model m.
Using the law of conditional probability, one can write:

P(M = m,Q = q) = P(M = m|Q = q)P(Q = q, t) (19)

The probabilities on the right hand side are explained in words
below:

P(M = m|Q = q): Probability that m is the best model given
that we are in the q th percentile of the DPE.

P(Q = q, t): Probability of being in the q th percentile at time
t.

These probabilities can be calculated as follows:

P(M = m|Q = q) =
# times m is best at q

# DPEs

P(Q = q, t) =
# times we are in q at time t

# DPEs
(20)

The intuition behind this ensemble is that during a DPE, at a
certain time of day t, the proportion of the event that we are
currently in is unknown. Furthermore, the best model for that
point in the DPE is also unknown. Therefore we estimate a
probability distribution for each of these unknowns, namely
P(M = m|Q = q) and P(Q = q, t). We use these distributions
to obtain the expected value of prediction from all N models.
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Published Data
Type Description

ANPR Travel
Times

Raw travel times, measured using
number plate recognition between
pairs of Automatic Number Plate
Recognition (ANPR) camera sites.

Events

Events affecting the traffic status of
the road network; manually created
and modified by operators of the
NTIS system or received from ex-
ternal systems.

MIDAS Loop
Data

Traffic data, measured from road-
side loop sensors monitored by Mo-
torway Incident Detection and Au-
tomatic Signalling (MIDAS) Gold
outstations.

TAME Loop Data

Traffic data, measured from road-
side loop sensors monitored by Traf-
fic Appraisal, Modelling and Eco-
nomics (TAME) outstations.

TMU Loop Data

Traffic data, measured from road-
side loop sensors monitored by Traf-
fic Monitoring Units (TMU) outsta-
tions.

Processed Traffic
Data – Fused
FVD and Sensor
Data

Traffic data, derived from fusing
and processing raw Fused Vehic-
ular Data (FVD) and sensor (MI-
DAS/TMU loop, ANPR) traffic
data.

Processed Traffic
Data – Fused
Sensor-only Data

Traffic data, derived from fusing
and processing raw sensor (MI-
DAS/TMU loop, ANPR) traffic
data.

VMS and Matrix
Signal Data

Variable Message Sign (VMS) and
Matrix signal display and status in-
formation.

NTIS

The NTIS Network and Asset
Model. The NTIS Model contains
reference data that enables the traffic
and event data included in the DATD
to be mapped to the road network.

Table 3. Data types included in the DATD [11]
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