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d Introduction

During the Football World Cup in 2010 the new ball introduced by
Adidas displayed a weird behaviour. Players were confused about the
trajectory of the ball, which leads to the following questions:

Why does it swerve?

Can we model the flight of a football?

Does the choice of ball matter?

Does the location of the game matter?
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d Why does a ball swerve?

Bernoulli’s Theorem for an inviscid flow:

|v|2

2
+ p = const.
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d Why does a ball swerve?

The boundary layer on the side of the ball with a greater velocity
becomes turbulent and separates from the ball later than the
laminar boundary layer. The wake then becomes deflected and so
the ball is ‘pushed’ towards the direction of spin.
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d Equations

Magnus Force:

FL =
8

3
πr2ρCL|v |2,

where ρ is air density, v is velocity, r is the radius of the ball
and CL is the dimensionless lift coefficient.

Drag force:

FD =
1

2
πr2ρCD |v |2,

where CD is the dimensionless drag coefficient.

It is important to note that the Magnus force acts perpendicular
to the drag force, which opposes the direction of travel.

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling



M
at

he
m

at
ic

al
In

st
it

ut
e

U
ni

ve
rs

it
y

of
O

xf
or

d

Considering motion in two-dimensions, we can analyse the path
of the ball by looking from above and from the side.

Looking from the side, we consider the following model:

ẍ = − 1

m

ẋ

|ẋ|
FD −

1

m

ż

|ẋ|
FL

z̈ = −g − 1

m

ż

|ẋ|
FD +

1

m

ẋ

|ẋ|
FL

The lift force FL is a consequence of top or bottom spin applied
to the ball on impact.

We can analyse the effects of gravity, drag and spin on the path
of the ball.
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d Drag and spin effects on vertical movement
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d Varying effects of spinning
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d Birds eye view

Looking from above, the Magnus force corresponds to a lateral
force, which is a consequence of side-spin.

We hence obtain the following model:

ẍ = − 1

m

ẋ

|ẋ|
FD −

1

m

ẏ

|ẋ|
FL

ÿ = − 1

m

ẏ

|ẋ|
FD +

1

m

ẋ

|ẋ|
FL
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d Reformulate..

Write KDv
2 = FD

m and KLv
2 = FL

m to obtain

ẍ = −KD ẋ
√
ẋ2 + ẏ2 − KLẏ

√
ẋ2 + ẏ2

ÿ = −KD ẏ
√
ẋ2 + ẏ2 + KLẋ

√
ẋ2 + ẏ2

x(0) = 0 = y(0) x ′(0) = 0 y ′(0) = v
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d Non-Dimensionalization

We rescale:

t = τ t̂ x = L1x̂ y = L2ŷ

and assume that for y only the drag is of relevance. (Distance
towards goal much bigger than sideways motion.) Then we obtain

¨̂x = − ˙̂y

√
1 +

L21
L22

˙̂x2

˙̂y2

(
L2KD

˙̂x +
L22KL

L1
˙̂y

)
¨̂y = − ˙̂y2L2KD

The equation for ŷ can be solved analytically and can be
redimensionalized:

y(t) =
1

KD
log(1 + tvKD)
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Now considering the equation for x̂ , we use the following scalings:

L1 = KLL
2
2 ε = KDL2

and write a = KL
KD

. That gives

¨̂x = − ˙̂y

√
1 + a2ε2

˙̂x2

˙̂y2

(
ε ˙̂x + ˙̂y

)
≈ ˙̂y

(
1 +

1

2
a2ε2

˙̂x2

˙̂y2

)(
ε ˙̂x + ˙̂y

)
Now write x̂ = x̂0 + εx̂1 + . . . and obtain

¨̂x0 = −
(

˙̂y
)2

¨̂x1 = − ˙̂y ˙̂x0

(both with homogenous boundary condition at zero).
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d Solving the asymptotics

These can be solved and we obtain our solutions:

x̂0 =
KL log (tvKD + 1)

K 2
D

− tvKL

KD

εx̂1 =
vKL

(
t log (tvKD + 1) + 2 log(tvKD+1)

vKD
− t
)

KD
− tvKL

KD
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d Quality of the Asymptotics

Lets consider a kick at 30m/s with 3 revolutions per second.
We compare the analytical solution to a numerical solution.
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Figure: Numerical vs First-Order vs Second-Order approximation
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d Location Changes

Changes in air density can change the swerve of a typical free
kick by up to a meter!
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d Back to Roberto Carlos...

From video analysis we can infer that Robert Carlos freekick had
a speed of approximately 30m/s and 10 revolutions per second.
Our model gives a deviation from a straig shot of approximately
4m.
This is coherent with measurements that sports journals have
taken.
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d Drag crisis

Low Reynolds number (i.e. low velocities): Laminar boundary
layer separates from the ball earlier → forms wide, low-pressure
wake → slows down ball.

Higher Reynolds number (higher velocities): Boundary layer
becomes turbulent → separates later than in laminar case →
forms a narrower wake and a lower drag coefficient.

A fast-moving ball may not slow down as quickly as a
goalkeeper might expect.
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d Other reasons for irratic behaviour

Reverse Magnus effect:

The flight of a ball with a low angular velocity (relative to
becomes primarily dependent on the air pressure which is
constantly changing. The points where the flow transitions from
laminar to turbulent are different on either side of the ball, so
the Magnus effect can reverse, leading to a ‘knuckle ball’ effect.

The smoothness of the ball changes the position of these
transition points: A ball with a rougher surface or stitching is
more likely to follow the ‘standard’ positive Magnus effect.
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d 3D Model
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ẏ
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Figure: 3D projection
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d 3D plots
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Figure: Spiral projection
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Figure: Drag crisis
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d Drag Crisis

0.47

0.20

Cd

Re
threshold

Brazuca
Jabulani

0.60

0.12

Figure: Drag crisis

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling



M
at

he
m

at
ic

al
In

st
it

ut
e

U
ni

ve
rs

it
y

of
O

xf
or

d Drag Crisis

Figure: Drag crisis
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d 2D projections
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Figure: Comparison of drag crisis effect
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d Conclusions — What have we done?

2D Models for side view and birds eye view.

Asymptotic solution for the birds eye model case when the
deviation from a straight shot is small.

Numerical solution for both models including the drag crisis.

3D Model including drag crisis.

Numerical solution for 3D model.
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d Objectives

Why does the ball swerve?

Magnus effect.

Can we model the flight of a football?

Yes. In 2D (numerical & analytical) and 3D (numerical).

Does the location matter?

Yes. The density of the air can change the amount of swerve
drastically.

Does the choice of ball matter?

Yes. Smoother balls have the drag crisis at higher velocities.

Can we explain oscillations in the flight?

Only speculate...
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d Next steps

Higher order asymtotics.

3D analytical solution.

Better drag crisis model.

Full CFD.

Model any other famous freekicks?
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