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Abstract—We present a new method for long-term estimation
of the expected travel time for links on highways and their
variation with time. The approach is based on a time series
analysis of travel time data from the UK’s National Traffic
Information Service (NTIS). Time series of travel times are
characterised by a noisy background variation exhibiting the
expected daily and weekly patterns punctuated by large spikes
associated with congestion events. Some spikes are caused by
peak hour congestion and some are caused by unforeseen events
like accidents. Our algorithm uses thresholding to split the data
into background and spike signals, each of which is analysed
separately. The the background signal is extracted using spectral
filtering. The periodic part of the spike signal is extracted using
locally weighted regression (LWR). The final estimated travel
time is obtained by recombining these two. We assess our method
by cross-validating in several UK motorways. We use 8 weeks
of training data and calculate the error of the resulting travel
time estimates for a week of test data, repeating this process 4
times. We find that the error is significantly reduced compared
to estimates obtained by simple segmentation of the data and
compared to the estimates published by the NTIS system.

Index Terms—Travel Time, Traffic Congestion, Prediction

I. INTRODUCTION

The UK collects and processes data from its Strategic Road
Network (SRN) in real time and makes it available through the
National Traffic Information Service (NTIS) [1]. NTIS collects
speed, flow and travel time data using sensors on the road and
in vehicles. The basic building blocks of the SRN are called
links - segments of motorway between 500 and 20000 metres
in length. NTIS data is used to assign a travel time profile to
each link. Profiles should represent the typical time to traverse
a link at a given time of day on a given day of the week and
are the topic of study of this paper.

Profiles clearly vary with day of the week and time of the
day but should be relatively stable from one week to the next.
This stability over time means calculating profiles is different
from the problem of short-term forecasting. While there is no
a-priori mathematical definition of a typical travel time, we
take it to mean the value that minimises the mean absolute
relative error (MAPE) with respect to subsequently measured
travel times. NTIS publishes profile values alongside measured
travel times although the methodology used to calculate them
is not in the public domain. In this paper, we present a
novel method for generating profiles for a complete week.
Our approach is based on statistical analysis of previous data
and does not require any a-priori segmentation of days into

classes. Rather patterns of intra- and inter-day variability are
learned directly from the data.

The available literature on travel times is extensive but
most recent research focuses on short-term forecasting and
with fewer studies looking into the long term [2] [3]. From a
methodological point of view statistical methods and machine
learning take most of the attention [4]. Within the last group,
neural networks are getting a level or relevance [5] [6] . Others
take closer approaches to this paper: using historical data [7]
[8], differentiating between peak and non-peak [9], performing
spectral analysis [10] or Locally Weighted Regressions [11]
[12] [13] [14] [15] [16]. Comparisons between some of these
studies and others can be found in [17], [18], [19] and
[20]. Most of these methods have been specifically tuned
for the conditions on which they have been developed and
transferability to other sites is often not evaluated. To assess
the transferability of our method, it is tested on three different
motorways. The method here presented, uses a combination
of spectral analysis, tree decisions and Locally Weighted
Regression (LWR).

II. EXAMPLES OF TRAVEL TIMES

The most direct variable for measuring the state of traffic
over a length of road is the vehicles’ travel times. The
instantaneous travel time for a given segment of road is the
average time that the vehicles currently in it are taking since
they enter the segment until they exit it.

Fig. 1. Travel times on link 117007401 in the M6 over three weeks.

As it can be seen in Figure 1 the travel time remains within
a vaguely predictable pattern most of the days, with bounded
minima during nights corresponding with the free flow time



and with some outliers below this value corresponding to
speeding drivers. Travel time will meaningfully rise as people
leave to work and add load to the motorways. This collective
behaviour will create the morning traffic jams, which in our
data, are partially replicated during the evening rush hour,
normally finding a plateau in between. After this, the travel
times slowly decay towards the night period of free-flow
regime. In Figure 1, it can also be seen that there are a
series of excursions out of this oscillating yet bounded typical
behaviour. In these, the travel time can increase several times
fold the usual values. These extreme oscillations are much less
predictable both in intensity and inter-oscillation period than
the recurrent congestion described previously.

III. BASIC METHODS FOR PROFILE ESTIMATION

A. Use of Exponentially Weighted Moving Average (EWMA)

The most basic approach to profile estimation is to apply
an EWMA on the same minute of every day, with the implicit
assumption that similar behaviour is expected at the same time
of the day. In this approach, the estimated profile x̂(i, d+ 1)
on the i−th minute of a given day d, for a memory parameter
α ∈ [0, 1] and with measured travel time xdi , will be:

x̂d+1
i = α ∗ xdi + (1− α) ∗ x̂di (1)

The main problem with EWMA is the manner in which the
memory decays. Recent measurements are weighted more
heavily than events in the past. Thus if an extreme fluctuation
occurs, the following profile estimates will be biased, partially
replicating this event and over-estimating the travel times until
enough new measurements arrive to dissipate this effect.

B. Segmentation

In addition, to acknowledge the specific differences between
some special dates in the year, and the difference between
days of the week, this family of methods requires the use of
heavy date based segmentation. The EWMA will be applied
across dates which fall in the same category (i.e. Mondays,
weekends, Christmas Day, ...). If this is combined with the
shortcomings presented in Section III-A, some long reaching
effects are generated, which can propagate for weeks into
the future predictions, but do not have any reflection on the
observed travel times. A possible instance of this effect can
be seen in Figure 2. Furthermore, in order to generate a
valid segmentation, an experienced team is necessary, since
the needs of the process can geographically vary, given that
the EWMA approach tends to better approximate endemic
congestion. This dependence can lead to the creation of legacy
systems which may not be well understood after a few years,
decreasing their usability over time unless extra effort is put
into transmitting this knowledge and continually train new
staff.

IV. DATA

A. Data Gathering and Selection

Data was gathered from 3 different Motorways in England.
The M6 and M11 were selected due to their high usage and
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Fig. 2. A single large random spike in travel time can lead to over-estimation
of subsequent profile estimates.

combination of recurrent and outstanding congestion. The M25
was selected on the base that it is the most used Motorway in
England on a daily basis, suffering from chronic congestion.
• The dataset for M6 comprises 90 days (12 complete

weeks) of data (07/03/2016-05/06/2016) across 14 links.
• The dataset for d M11 comprises 90 days (12 complete

weeks) of data (07/03/2016-05/06/2016) across 25 links.
• The dataset for M25 comprises 75 days (10 complete

weeks) of data (07/04/2017-20/06/2017) across 61 links.
• Links were discarded if they had more than 10% of

missing data or if they contained any entry or exit ramps.
• Whenever missing data was detected for 10 or less

minutes, it was linearly interpolated.
• Whenever missing data was detected for over 10 minutes,

it was left as missing values.
In the case of the M6 and the M11 the first 8 weeks are
used to predict one complete week ahead. One week later, the
process is repeated, deleting the oldest week of training data
and incorporating measurements of the week predicted in the
previous step. This is performed 4 times. In the case of the
M25, 6 weeks of data were used for training and the process
as described above is performed 3 times.

B. Data Contents

For each link on a specific date, the required input data
consists of one entry per minute, containing:
• Measured travel time
• Profile (expected) travel time

V. TRAVEL TIME PREDICTION ALGORITHM

Given the cyclic nature of traffic, the aim was a prediction
algorithm that could account for the periodic variations and
endemic congestion while being resilient to fluctuations and
rare events. This algorithm also should:
• Be robust, mitigating the propagation of isolated events

into future forecasts, unlike methods using EWMA.
• Not require the use of time segmentation and be valid for

regular and ”special” dates.
• Be location agnostic, the internal parameters should be

set algorithmically based on the data.
• Have Gaussian, mean 0, uncorrelated residuals.
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Fig. 3. Autocorrelation function of a link in the M6 over a period of 4 weeks,
showing seasonal patterns on the daily and weekly periods.

• Near flat Trend term, given the different time scales
between seasonal cycles and changes in the general
motorway flow.

A. Naive Segmentation

To obtain an accurate comparison of the performance of the
algorithm developed in the following subsections, an example
of basic segmentation was coded. This involved a weighted
combination of the training data points using uniform weights.
In this way, for the i − th minute of a week and using a
training set composed of the previous of n weeks, the Naive
Segmentation (NS) profile is:

x̂(i, n) =

n∑
week=1

xin
n

(2)

B. Decomposition in Background and Spikes

During exploratory data analysis we found that, from the
point of view of travel times, traffic operates in two differen-
tiated regimes that we denominated Background and Spikes.
• Background:

– Stable around a mean value.
– Oscillates with small amplitude and high frequency.
– Suitable for spectral filtering.

• Spikes:
– Zero most of the time. Quickly go to extreme values.
– Oscillates with great amplitude and low inter-

oscillation frequency, creating far reaching effects.
– Suitable for seasonal decomposition.

In this context, assuming Gaussian noise ξ, and that the
components operate in an additive way, generated a signal of
the form:

Travel Timet = Backgroundt + Spikest + ξ (3)

The objective was to separate them in such a way that the
moments of smooth and normal operation are captured as part
of the Background and used for spectral analysis, attempting
to mitigate the prediction error induced by the high frequency
oscillations and obtaining a basic view of what can be daily
observed. Meanwhile, the spikes, including the recurring and
non-recurring congestion, were treated separately searching
for seasonality in larger time scales than those in which the

Fig. 4. Schematic of data streams in the algorithm.

travel time signal oscillates, as suggested by Fig. 3. Ideally,
after this final step of the decomposition, the remainder
should only contain isolated large rare events deviating from
the profile and white noise.

To prevent the differing lengths of the links from affecting
this decomposition, for this step, all travel times were normal-
ized according to their corresponding link’s free flow time,
defined as the time to transverse the length of the link at the
maximum legal speed allowed by the motorway. However, this
step only mitigates the non-regularity of the time series, since
there are drivers who do not follow these limits. A threshold
was heuristically set, as seen in Table I to separate the two
components in the different regimes from the normalised travel
times on a per-motorway basis, although better results can
be obtained by setting each link individually. Intuitively, this
threshold scales with the amount of recurring congestion in a
link. Whenever a data point was above the threshold, it was
flagged as belonging to a spike.

TABLE I
TRAVEL TIME NORMALISATION THRESHOLDS

Motorway Threshold
M6 1.1

M11 1.2
M25 1.4

For this purpose, an indicator function was defined, taking
for every minute the value:

δspiket =

{
1, if xt > Threshold
0, otherwise

(4)

C. Spectral Component

The main difficulty when dealing with the Background
signal is the low amplitude, high frequency fluctuations that
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Fig. 5. Decomposition time series in background and spikes

can be found almost ubiquitously. Signal smoothing can be
performed by completely removing a range of frequencies
while the information bearing bands are retained. For this task,
the Fast Fourier Transform (FFT) [21] was used as follows:

1) Calculate Background Power Spectrum using FFT
2) Remove frequencies corresponding to periods under 4

hours and over 1 week
3) Repeat for all n weeks in training set
4) Apply EWMA to the modified weekly Power Spectra
5) Compute the Inverse Transform

D. Seasonality Component

Seasonal-Trend Decomposition based on LOESS (STL)
[22] was the chosen algorithm for the seasonality analysis
since it can handle any type of seasonality, allowing the user
to control how it changes over time as well as the smoothness
of the trend-cycle while being robust to outliers [23].

Below, the sequence of steps taken to extract the Seasonality
Components that can be observed in Fig. 3 is described in line
with the schematic data streams represented in Fig. 4. Note
that this should be applied to the n training weeks as a single
time series.

1) Decomposition of Background for daily seasonality
2) Extract and sum the series corresponding Trend and

Remainder from Step 1
3) Decomposition of output from 2 for weekly seasonality
4) Add daily and weekly Seasonal components from Step

1 and Step 3 to obtain global seasonality
5) Average seasonality across training weeks
6) Linearise Trend term from output of Step 3
7) Add linearised trend to seasonality obtained in Step 6
8) STL Decomposition of Spikes for weekly seasonality
9) Extract Spike’s Seasonality corresponding to the number

of weeks for forecasting
10) Add Spike’s Seasonal component to the output of 8

To ensure a successful decomposition, after Step 3 Back-
ground’s Remainder should be zero mean, Gaussian dis-
tributed. Background’s Trend should have a near zero slope.
These outcomes should also hold if performed again after Step
8, with the addition that the trend should also be close to zero
in absolute value, since the time scales in which such a global

trend can meaningfully vary should be much greater than the
prediction scope of this algorithm.

E. Seasonal-Spectral Hybrid Profile

In order to create the final Seasonal-Spectral Hybrid profile
(Hybrid), one of the two forecasts generated in the previous
points is taken, depending on what is the identified regime:

Hybrid = Seasonal ∗ δspike + Spectral ∗ (1− δspike) (5)

VI. ACCURACY RESULTS

In this section the accuracy of the algorithm described above
is compared against the Published Profiles and the NS Model.
For each temporal point i, the Mean Average Relative Error
(MARE) is defined below:

MARE =

(∑n
i=1

‖xi−x̂i‖
xi

)
n

(6)

For complete Motorways, the Root Mean Squared Error
(RMSE) has been calculated for each temporal point i as:

RMSE =

√∑n
i=1(xi − x̂i)2

n
(7)

In both cases the error for a Link is defined as the average
MARE or RMSE across all prediction points. The error for a
Motorway is defined as the average of the error across all its
links.

A. Accuracy by Quantile
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Fig. 6. Average accuracy results in M6 across percentiles of travel time.
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Fig. 7. Link average accuracy results in M11 across percentiles of travel time.
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Fig. 8. Link average accuracy results in M25 across percentiles of travel time.

Here, the accuracy of the algorithm is compared against the
Published Profiles and the NS Profile across all percentiles of
travel time. As it can be seen in Figs. 6, 7 and 8, the Hybrid
Profile has a higher accuracy than the Published Profiles and
the NS Model for all percentiles of travel time except for the
most extreme values where they all perform poorly.
The most meaningful difference occurs between percentiles
[50 − 95], where the Published Profile starts to suffer from
higher inaccuracy.

B. Daytime Error
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Fig. 9. Link average accuracy results in M6 across times of the day.

Here, the accuracy of the algorithm is compared against
the Published Profiles and the NS Profile across the times
of the day. As it can be seen in Figures 9, 10 and 11,
the Hybrid Profile has a higher accuracy than the Published
Profiles and the NS Model for all times of the day, all
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Fig. 10. Link average accuracy results in M6 across times of the day.
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Fig. 11. Link average accuracy results in M25 across times of the day.

locations and training lengths. The most relevant improvement
occurs during the morning and evening peak hours, where the
algorithm presented in this paper does not accuse meaningful
performance worsening relative to the morning plateau when
compared with the other two profiles.
In the case of the M6 and M11, where the training set is richer,
the error at peak times is reduced by at least 50% in all cases,
reaching as much as 68.7% in the case of the M6 morning
rush. In the case of the M25, which is congested on a regular
basis, the errors in the Published Profile during peak times are
slightly lower than on the other cases, indicating that, given

TABLE II
MARE DISTRIBUTION PER MOTORWAY

% rel. error <-25% -25% to -15% -15% to -5% -5% to 5% 5% to 15% 15 % to 25% >25%
M6 1.58 0.60 3.77 88.01 5.97 0.06 0.01
M11 0.80 0.35 4.07 86.15 7.97 0.49 0.15
M25 3.85 2.73 10.42 75.12 7.29 0.33 0.28



the use of EWMA for its calculation, recurrent congestion is
better captured by it. Even in this case, the proposed algorithm
performs significantly better than any of the other two, except
for a brief window between 6-7AM when it is outperformed
by the NS Model.

TABLE III
MARE PER LINK ON M6

Link MARE
117007401 0.0211
117007501 0.0421
117007601 0.0246
117007801 0.0480
117007901 0.0308
117008401 0.0331
117009102 0.0269
117011901 0.0235
117012001 0.0446
117012101 0.0262
117012201 0.0431
117012301 0.0275
117016001 0.0360
123025901 0.0189

TABLE IV
GLOBAL MARE & RMSE PER MOTORWAY

Motorway MARE RMSE [s]
M6 0.0318 0.0368

M11 0.0300 0.0355
M25 0.0552 0.0667

VII. FUTURE WORK

The algorithm presented above meets the requirements
described in Section V except for the need of an heuristically
set threshold. One potential way of reaching compliance
with these requirements is to perform the decomposition by
applying a Wavelet Transform and separating background from
spikes based on statistical analysis of the transformed time
series in terms of how their Wavelet coefficients fluctuate over
time within a scale level. In the future a sensitivity analysis
should be conducted to explore the limits of the algorithm
in terms of minimum training data set, as well as maximum
performance with increased training.
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